Характеристики компьютерного процессора

Характеристики компьютерного процессора

Вот важные характеристики процессоров:



Производитель и модель процессора

Основной определяющей характеристикой процессора является его марка AMD или Intel и его модель. Хотя конкурирующие модели от двух компаний имеют схожие функции и производительность, вы не можете установить процессор AMD на Intel-совместимую материнскую плату или наоборот.

Тип розетки

Еще одна определяющая характеристика процессора - это сокет, для которого он предназначен. Например, если вы заменяете процессор на материнской плате Socket 478, вы должны выбрать заменяющий процессор, предназначенный для этого разъема. Таблица 5-1 описывает проблемы с возможностью обновления по сокету процессора.



Заблокировать изображение' alt=

Таблица 5-1: Возможность модернизации в зависимости от типа сокета процессора



Тактовая частота

Тактовая частота процессора, которая указывается в мегагерцах (МГц) или гигагерцах (ГГц), определяет его производительность, но тактовые частоты бессмысленны для всех линий процессора. Например, Pentium 4 Prescott с тактовой частотой 3,2 ГГц примерно на 6,7% быстрее Pentium 4 с тактовой частотой 3,0 ГГц, как следует из относительных тактовых частот. Однако процессор Celeron с тактовой частотой 3,0 ГГц работает медленнее, чем Pentium 4 с тактовой частотой 2,8 ГГц, в первую очередь потому, что Celeron имеет меньший кэш L2 и использует более низкую скорость шины хоста. Точно так же, когда Pentium 4 был представлен на частоте 1,3 ГГц, его производительность была фактически ниже, чем у процессора Pentium III с тактовой частотой 1 ГГц, который он должен был заменить. Это было правдой, потому что архитектура Pentium 4 менее эффективна по тактовой частоте, чем более ранняя архитектура Pentium III.



почему на моем андроиде неправильное время

Тактовая частота бесполезна для сравнения процессоров AMD и Intel. Процессоры AMD работают на гораздо более низких тактовых частотах, чем процессоры Intel, но выполняют примерно на 50% больше работы за такт. Вообще говоря, AMD Athlon 64 с тактовой частотой 2,0 ГГц имеет примерно такую ​​же общую производительность, что и Intel Pentium 4 с тактовой частотой 3,0 ГГц.

'''MODEL NUMBERS VERSUS CLOCK SPEEDS''' Because AMD is always at a clock speed disadvantage versus Intel, AMD uses model numbers rather than clock speeds to designate their processors. For example, an AMD Athlon 64 processor that runs at 2.0 GHz may have the model number 3000+, which indicates that the processor has roughly the same performance as a 3.0 GHz Intel model. (AMD fiercely denies that their model numbers are intended to be compared to Intel clock speeds, but knowledgeable observers ignore those denials.) Intel formerly used letter designations to differentiate between processors running at the same speed, but with a different host-bus speed, core, or other characteristics. For example, 2.8 GHz Northwood-core Pentium 4 processors were made in three variants: the Pentium 4/2.8 used a 400 MHz FSB, the Pentium 4/2.8B the 533 MHz FSB, and the Pentium 4/2.8C the 800 MHz FSB. When Intel introduced a 2.8 GHz Pentium 4 based on their new Prescott-core, they designated it the Pentium 4/2.8E. Interestingly, Intel has also abandoned clock speed as a designator. With the exception of a few older models, all Intel processors are now designated by model number as well. Unlike AMD, whose model numbers retain a vestigial hint at clock speed, Intel model numbers are completely dissociated from clock speeds. For example, the Pentium 4 540 designates a particular processor model that happens to run at 3.2 GHz. The models of that processor that run at 3.4, 3.6, and 3.8 GHz are designated 550, 560, and 570 respectively.

Скорость хост-шины

В скорость хост-шины , также называемый скорость фронтальной шины, скорость FSB , или просто ФСБ , определяет скорость передачи данных между процессором и набором микросхем. Более высокая скорость шины хоста способствует более высокой производительности процессора даже для процессоров, работающих с одинаковой тактовой частотой. AMD и Intel по-разному реализуют путь между памятью и кешем, но по сути FSB - это число, которое отражает максимально возможное количество передач блоков данных в секунду. Учитывая фактическую тактовую частоту шины хоста, равную 100 МГц, если данные могут передаваться четыре раза за тактовый цикл (т.е. с четырехкратной перекачкой), эффективная частота FSB составляет 400 МГц.

Например, Intel выпустила процессоры Pentium 4, которые используют частоту шины хоста 400, 533, 800 или 1066 МГц. Pentium 4 с тактовой частотой 2,8 ГГц и частотой хост-шины 800 МГц незначительно быстрее, чем Pentium 4 / 2.8 со скоростью хост-шины 533 МГц, что, в свою очередь, немного быстрее, чем Pentium 4 / 2.8 с хост-шиной 400 МГц. скорость автобуса. Одним из показателей, который Intel использует для дифференциации своих недорогих процессоров Celeron, является снижение скорости шины хоста по сравнению с текущими моделями Pentium 4. В моделях Celeron используются частоты хост-шины 400 МГц и 533 МГц.



Все процессоры AMD под Socket 754 и Socket 939 используют частоту хост-шины 800 МГц. (На самом деле, как и Intel, AMD использует хост-шину на частоте 200 МГц, но увеличивает ее до 800 МГц.) Процессоры Sempron с разъемом A используют хост-шину 166 МГц, с двойной подкачкой до эффективной скорости хост-шины 333 МГц. .

Размер кэша

Процессоры используют два типа кэш-памяти для повышения производительности за счет буферизации передач между процессором и относительно медленной основной памятью. Размер Кэш уровня 1 (кэш L1 , также называется Кэш 1-го уровня ), является особенностью архитектуры процессора, которую нельзя изменить без изменения конструкции процессора. Кэш 2-го уровня (кэш 2-го уровня или кэш-память 2-го уровня ), однако, является внешним по отношению к ядру процессора, что означает, что производители процессоров могут производить один и тот же процессор с разными размерами кэша L2. Например, различные модели процессоров Pentium 4 доступны с 512 КБ, 1 МБ или 2 МБ кэш-памяти L2, а различные модели AMD Sempron доступны с 128 КБ, 256 КБ или 512 КБ кеш-памяти L2.

Для некоторых приложений, особенно тех, которые работают с небольшими наборами данных, больший кэш L2 заметно увеличивает производительность процессора, особенно для моделей Intel. (Процессоры AMD имеют встроенный контроллер памяти, который в некоторой степени маскирует преимущества большего кэша L2.) Для приложений, которые работают с большими наборами данных, больший кэш L2 дает лишь незначительную выгоду.

'''Prescott, the Sad Exception''' It came as a shock to everyone not the least, Intel to learn when it migrated its Pentium 4 processors from the older 130 nm Northwood core to the newer 90 nm Prescott-core that power consumption and heat production skyrocketed. This occurred because Prescott was not a simple die shrink of Northwood. Instead, Intel completely redesigned the Northwood core, adding features such as SSE3 and making huge changes to the basic architecture. (At the time, we thought those changes were sufficient to merit naming the Prescott-core processor Pentium 5, which Intel did not.) Unfortunately, those dramatic changes in architecture resulted in equally dramatic increases in power consumption and heat production, overwhelming the benefit expected from the reduction in process size.

Размер процесса

Размер процесса , также называется fab (rication) размер , указывается в нанометрах (нм) и определяет размер мельчайших отдельных элементов на кристалле процессора. AMD и Intel постоянно пытаются уменьшить размер процесса (так называемый умереть усадить ), чтобы получить больше процессоров с каждой кремниевой пластины, тем самым снизив затраты на производство каждого процессора. Pentium II и ранние процессоры Athlon использовали техпроцесс 350 или 250 нм. Pentium III и некоторые процессоры Athlon использовали 180-нм техпроцесс. В последних процессорах AMD и Intel используется процесс 130 или 90 нм, а в будущих процессорах будет использоваться процесс 65 нм.

Размер процесса имеет значение, потому что при прочих равных условиях процессор, использующий меньший размер процесса, может работать быстрее, использовать более низкое напряжение, потреблять меньше энергии и выделять меньше тепла. В процессорах, доступных в любой момент времени, часто используются фабрики разных размеров. Например, одно время Intel продавала процессоры Pentium 4, которые использовали размеры процесса 180, 130 и 90 нм, а AMD одновременно продавала процессоры Athlon, которые использовали размеры фабрики 250, 180 и 130 нм. Когда вы выбираете обновленный процессор, отдавайте предпочтение процессору меньшего размера.

внешний жесткий диск издает звук щелчка

Особые возможности

Разные модели процессоров поддерживают разные наборы функций, некоторые из которых могут быть важны для вас, а другие - нет. Вот пять потенциально важных функций, которые доступны в некоторых, но не во всех текущих процессорах. Все эти функции поддерживаются последними версиями Windows и Linux:

SSE3

SSE3 (Расширения потоковой передачи данных с несколькими инструкциями (SIMD) 3) , разработанный Intel и теперь доступный для большинства процессоров Intel и некоторых процессоров AMD, представляет собой расширенный набор инструкций, предназначенный для ускорения обработки определенных типов данных, которые обычно встречаются при обработке видео и других мультимедийных приложениях. Приложение, поддерживающее SSE3, может работать от 10% или 15% до 100% быстрее на процессоре, который также поддерживает SSE3, чем на процессоре, который этого не делает.

64-битная поддержка

До недавнего времени все процессоры ПК работали с 32-битными внутренними путями данных. В 2004 году AMD представила 64-битная поддержка со своими процессорами Athlon 64. Официально AMD называет эту функцию x86-64 , но большинство людей называют это AMD64 . Важно отметить, что процессоры AMD64 обратно совместимы с 32-разрядным программным обеспечением и запускают это программное обеспечение так же эффективно, как и 64-разрядное программное обеспечение. Intel, которая отстаивала свою собственную 64-битную архитектуру, которая имела только ограниченную 32-битную совместимость, была вынуждена представить свою собственную версию x86-64, которую она называет EM64T (64-битная технология с расширенной памятью) . На данный момент поддержка 64-битной версии для большинства людей не важна. Microsoft предлагает 64-битную версию Windows XP, и большинство дистрибутивов Linux поддерживают 64-битные процессоры, но до тех пор, пока 64-битные приложения не станут более распространенными, от использования 64-битного процессора на настольном компьютере будет мало реальных преимуществ. Это может измениться, когда Microsoft (наконец) выпустит Windows Vista, которая будет использовать преимущества поддержки 64-битных систем и, вероятно, породит множество 64-битных приложений.

Защищенное исполнение

В Athlon 64 AMD представила NX (без eXecute) технологии, и вскоре Intel XDB (бит отключения eXecute) технология. NX и XDB служат той же цели, позволяя процессору определять, какие диапазоны адресов памяти являются исполняемыми, а какие - неисполняемыми. Если код, например эксплойт переполнения буфера, пытается работать в неисполняемой области памяти, процессор возвращает ошибку в операционную систему. NX и XDB обладают большим потенциалом для уменьшения ущерба, причиняемого вирусами, червями, троянами и аналогичными эксплойтами, но требуют операционной системы, поддерживающей защищенное выполнение, например Windows XP с пакетом обновления 2.

Технология снижения мощности

AMD и Intel предлагают технологию снижения мощности в некоторых своих моделях процессоров. В обоих случаях технология, используемая в мобильных процессорах, была перенесена на настольные процессоры, потребление энергии и тепловыделение которых стали проблематичными. По сути, эти технологии работают за счет снижения скорости процессора (и, следовательно, энергопотребления и выделения тепла), когда процессор простаивает или слегка загружен. Intel называет свою технологию снижения мощности EIST (усовершенствованная технология Intel Speedstep) . Версия AMD называется Cool'n'Quiet . Любой из них может привести к незначительному, но полезному снижению энергопотребления, выработки тепла и уровня шума системы.

Поддержка двухъядерных процессоров

К 2005 году AMD и Intel достигли практических пределов возможностей одного ядра процессора. Очевидным решением было разместить два процессорных ядра в одном корпусе процессора. И снова AMD показала элегантный Athlon 64 X2 процессоры серии, в которых два тесно интегрированных ядра Athlon 64 на одном кристалле. Вновь вынужденная догонять Intel, стиснув зубы, собрала двухъядерный процессор, который она называет Pentium D . Спроектированное решение AMD имеет несколько преимуществ, включая высокую производительность и совместимость практически с любой старой материнской платой Socket 939. Грубое решение Intel, которое, по сути, сводилось к тому, что два ядра Pentium 4 на одном чипе без их интеграции, привело к двум компромиссам. Во-первых, двухъядерные процессоры Intel не имеют обратной совместимости с более ранними материнскими платами, и поэтому требуют нового набора микросхем и материнских плат новой серии. Во-вторых, поскольку Intel более или менее просто склеила два своих существующих ядра в одном корпусе процессора, энергопотребление и тепловыделение чрезвычайно высоки, что означает, что Intel пришлось снизить тактовую частоту процессоров Pentium D по сравнению с самым быстрым одноядерным Pentium. 4 модели.

Все это говорит о том, что Athlon 64 X2 ни в коем случае не является явным победителем, потому что Intel была достаточно умен, чтобы дать Pentium D привлекательную цену. Самые дешевые процессоры Athlon X2 более чем в два раза дороже самых дешевых процессоров Pentium D. Хотя цены, несомненно, упадут, мы не ожидаем значительного изменения ценовой разницы. У Intel есть резервные производственные мощности, в то время как AMD весьма ограничена в своих возможностях производить процессоры, поэтому вполне вероятно, что двухъядерные процессоры AMD будут иметь повышенную цену в обозримом будущем. К сожалению, это означает, что двухъядерные процессоры не подходят для большинства людей. Двухъядерные процессоры Intel имеют разумную цену, но требуют замены материнской платы. Двухъядерные процессоры AMD могут использовать существующую материнскую плату Socket 939, но сами процессоры слишком дороги, чтобы быть жизнеспособными кандидатами для большинства обновлений.

'''HYPER-THREADING VERSUS DUAL CORE''' Some Intel processors support ''Hyper-Threading Technology (HTT)'', which allows those processors to execute two program threads simultaneously. Programs that are designed to use HTT may run 10% to 30% faster on an HTT-enabled processor than on a similar non-HTT model. (It's also true that some programs run slower with HTT enabled than with it disabled.) Don't confuse HTT with dual core. An HTT processor has one core that can sometimes run multiple threads a dual-core processor has two cores, which can always run multiple threads.

Имена ядер и степпинг ядра

В ядро процессора определяет базовую архитектуру процессора. Процессор, продаваемый под определенным названием, может использовать любое из нескольких ядер. Например, первые процессоры Intel Pentium 4 использовали Ядро Willamette . Более поздние варианты Pentium 4 использовали Ядро Northwood, ядро ​​Prescott, ядро ​​Gallatin, ядро ​​Prestonia , и Ядро Prescott 2M . Аналогичным образом, различные модели Athlon 64 были произведены с использованием Ядро Clawhammer, ядро ​​Sledgehammer, ядро ​​Ньюкасла, ядро ​​Винчестера, ядро ​​Венеции, ядро ​​Сан-Диего, ядро ​​Манчестера , и Толедо ядро .

Использование имени ядра - удобный сокращенный способ кратко указать многочисленные характеристики процессора. Например, ядро ​​Clawhammer использует процесс 130 нм, кэш L2 1024 КБ и поддерживает функции NX и X86-64, но не SSE3 или двухъядерную работу. И наоборот, ядро ​​Manchester использует процесс 90 нм, кэш L2 512 КБ и поддерживает SSE3, X86-64, NX и двухъядерные функции.

Вы можете думать о названии ядра процессора как об основном номере версии программного обеспечения. Подобно тому, как компании-производители программного обеспечения часто выпускают незначительные обновления без изменения номера основной версии, AMD и Intel часто делают незначительные обновления своих ядер, не меняя имени ядра. Эти незначительные изменения называются основные ступени . Важно понимать основы имен ядер, потому что ядро, которое использует процессор, может определять его обратную совместимость с вашей материнской платой. Шаги обычно менее значительны, хотя на них тоже стоит обратить внимание. Например, конкретное ядро ​​может быть доступно в степпингах B2 и C0. В более позднем степпинге C0 могут быть исправлены ошибки, охлаждение или другие преимущества по сравнению с более ранним степпингом. Степпинг ядра также важен, если вы устанавливаете второй процессор на двухпроцессорную материнскую плату. (То есть материнская плата с двумя процессорными сокетами, в отличие от двухъядерного процессора на однопроцессорной материнской плате.) Никогда, никогда не смешивайте ядра или степпинги на двухпроцессорной материнской плате таким образом - это безумие (или, возможно, просто катастрофа).

Подробнее о компьютерных процессорах